

State of the Art of Starlight Suppression Technology

Brendan Crill, Pin Chen, Nick Siegler

NASA Exoplanet Exploration Program

Jet Propulsion Laboratory / California Institute of Technology

April 12, 2023

Copyright 2023 California Institute of Technology. U.S. Government sponsorship acknowledged. This document has been reviewed and determined not to contain export-controlled technical data.

Requirements

Exoplanet Direct Imaging in the Optical and Near-infrared

Roman Coronagraph Laboratory Demonstrations

Table 2.1: Coronagraph contrast demonstrated in laboratory testbed settings by the Roman Coronagraph team. Adapted from Seo (private communication).

Year	Accomplishment	Contrast	λ (nm)	Band	Angle (λ /D)	Reference
2015	Narrowband 360° Hybrid Lyot contrast with 2 DMs and Ro-	6.92×10^{-9}	550		3–9	[22]
	man pupil					
2015	Broadband Hybrid Lyot demo	8.54×10^{-9}	550	10%	3–9	[23]
2015	Broadband Shaped Pupil	8.80×10^{-9}	550	10%	3–9	[23]
2017	demo	1 (0, 10-9	FF0	100/	2.0	[0.4]
2017	Broadband Hybrid Lyot	1.60×10^{-9}	550	10%	3–9	[24]
2017	Broadband Shaped Pupil	4.3×10^{-9}	550	10%	2.8-8.8	[24]
2017	Broadband Shaped Pupil and	$<1 \times 10^{-8}$	550	10%	3–9	[24]
	Hybrid Lyot dynamic environ- ment ^a					
2017	Integral Field Spectrograph contrast demo	1.00×10^{-8}	660	18%	3–9	[25]
2018	Broadband Disc mask contrast	3.46×10^{-9}	660	10%	6.3-19.5	[26]
2019	Band 1 Hybrid Lyot	3.58×10^{-9}	575	15%	3–9	
2020	Integral Field Spectrograph contrast demo	4.83×10^{-9}	760	18%	3–9	
	tope for the states (I decrease perfections)					g-Joon Seo et al. Milestone 4 Final R Demonstration of Hubrid Luot Coro

^a Sensing and control of flight-like tip, tilt, and focus aberrations only.

^{2]} Byoung-Joon Seo et al. Milestone 4 Final Report: Narrowband Contrast Testbed Demonstration of Hybrid Lyot Coronagraph for WFIRST-AFTA. https://exoplanets.nasa.gov/exep/resources/documents/ (cited on page 14).

^[23] Eric Cady et al. Milestone 5 Final Report: Hybrid Lyot and Shaped Pupil Broadband Contrast Testbed Demonstration for WFIRST-AFTA. https://explanets.nasa.gov/exep/resources/documents/ international Contrast Contr

^[24] WFIRST Coronagraph Testbed and Modeling Teams. WFIRST CGI Milestone 9 Dynamic Contrast Demonstration Status Update. https: //exoplanets.nasa.gov/exep/resources/documents/ (cited on pages 14, 21).

^[25] Tyler D. Groff et al. "Wavefront control methods for high-contrast integral field spectroscopy". In: Techniques and Instrumentation for Detection of Exoplanets VIII. Ed. by Stuart Shaklan. SPIE, Sept. 2017. DOI: 10.1117/12.2274799 (cited on page 14).

^[26] David S. Marx et al. "Shaped pupil coronagraph: disk science mask experimental verification and testing". In: Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Ware. Ed. by Howard A. MacEwen et al. SPIE, July 2018. DOI: 10.1117/12. 2312602 (cited on page 14).

Best Broadband Demonstrations to Date

State of the Art Lab Demonstrations (Segmented Apertures)

Soummer et al (2022): Phase-apodized Lyot Coronagraph

Segmented mirror simulating a segmented off-axis mirror in-air

2x10⁻⁸ average contrast 2-13 λ/D 0% bandwidth unpolarized light

Belikov et al (2022): PIAACMC

Segmented mask simulating a static segmented on-axis mirror in vacuum

1.8x10⁻⁸ average contrast 3.5-8 λ/D 10% bandwidth polarized light

Riggs et al (2022): Vortex Coronagraph

Segmented mask simulating a static segmented off-axis mirror in vacuum

4.7x10⁻⁹ average contrast 3-10 λ/D 10% bandwidth polarized light

Habitable Worlds Observatory requirements

(CBE, ref. Astro2020 Table E.1)

- <u>IWA</u>: ~ 60 mas:
 - VVC (LUVOIR-B) design meets requirement for λ < 0.62 μm (6-meter aperture), whereas the required spectral coverage might be as wide as 0.3 1.8 μm
- OWA for Spectroscopy: ~ 500 mas
 - VVC (LUVOIR-B) design meets requirement for λ > 0.52 μm, whereas the required spectral coverage might be as wide as 0.3 1.8 μm
- OWA for Imaging Only: ~ 1"
 - VVC (LUVOIR-B) design meets requirement for $\lambda > 1.0 \mu m$
- <u>Contrast:</u> ~ 1E-10
 - APLC and HLC (LUVOIR-A) designs surpass the requirement (even for an on-axis aperture) for average contrast (over the stated dark zone) and point-source stars
 - At 3 λ /D, only the HLC (LUVOIR-A) design produces 1E-10
 - Stellar diameter (or pointing jitter) has a large impact on contrast at 3 λ /D, but much smaller impact on average contrast
 - WFE due to random segment-piston jitter is generally disastrous at 100 pm RMS but tolerable at ~ 10 pm RMS
- Bandwidth: ~ 20% or greater
- Meeting all requirements will likely require a combination of coronagraphs

State of the Art Lab Demonstrations (Clear Aperture)

Recent Coronagraph Lab Demonstrations

Coronagraph Type	HWO goal	Classical Lyot	Vector Vortex charge 4	Phase Apodized Pupil Lyot Coronagraph	Phase Induced Amplitude Apodization Coronagraph	Vector Vortex charge 4
Aperture Type		Circular unobscured (off-axis monolith)		Off-axis segmented mirror	Circular on-axis static segmented mask	Circular off-axis static segmented mask
Deformable Mirrors	2x 96 x 96	2 AOX (each 48 x 48 act)	2 AOX (each 48 x 48 act)	2 BMC MEMs (each 1k act)	1 BMC MEMs (1k act)	1 BMC MEMs (2k act)
Separation Range	3-45 λ/D	5-13.5 λ /D (vs 3-10 λ /D)	3-8 λ/D	2 – 13 λ/D	3.5 – 8 λ/D	3-10 λ/D
Dark Hole Azimuthal Extent (deg)	360	180 (vs 360)	180	180	180	180
Mean Raw Contrast over Sep. Range	1 x 10 ⁻¹⁰	4 x 10 ⁻¹⁰ (idem)	5.9 x 10 ⁻⁹ (1.6 x 10 ⁻⁹)	2 x 10 ⁻⁸	1.8 x 10 ⁻⁸	4.7 x 10 ⁻⁹
Central wavelength (nm)	300-1300	550	635	638	650	635
Spectral bandwidth	20%	20% (10%)	20% (10%)	Monochromatic	10%	10%
Number of polarizations	2	1	1	2	1	1
Off-axis Throughput	high	medium	high	high	high	high
Sensitivity to low order aberrations	low	medium	low	medium	medium	low
Facility and Testbed		JPL HCIT-2 DST	JPL HCIT-2 DST	STScl HiCAT	JPL HCIT-2	JPL HCIT-2 DST
Vacuum Operation		Υ	Υ	N	Υ	Υ

Currently demonstrated static contrast performance degrades when moving toward coronagraphs with higher throughput and lower sensitivity to aberrations, moving from monolithic to segmented apertures, and from off-axis to on-axis

Recent Starlight Suppression Demonstrations

Coronagraph Type	HWO goal	Classical Lyot	Vector Vortex charge 4	Phase Apodized Pupil Lyot Coronagraph	Phase Induced Amplitude Apodization Coronagraph	Vector Vortex charge 4	Starshade subscale flight Fresnel number
Aperture Type		Circular unobscured (off-axis monolith)		Off-axis segmented mirror	Circular on-axis static segmented mask	Circular off-axis static segmented mask	n/a
Deformable Mirrors	2x 96 x 96	2 AOX (each 48 x 48 act)	2 AOX (each 48 x 48 act)	2 BMC MEMs (each 1k act)	1 BMC MEMs (1k act)	1 BMC MEMs (2k act)	n/a
Separation Range	3-45 λ/D	5-13.5 λ/D (vs 3-10 λ/D)	3-8 λ/D	2 – 13 λ/D	3.5 – 8 λ/D	3-10 λ/D	1.7-7 λ/D
Dark Hole Azimuthal Extent (deg)	360	180 (vs 360)	180	180	180	180	360
Mean Raw Contrast over Sep. Range	1 x 10 ⁻¹⁰	4 x 10 ⁻¹⁰ (idem)	5.9 x 10 ⁻⁹ (1.6 x 10 ⁻⁹)	2 x 10 ⁻⁸	1.8 x 10 ⁻⁸	4.7 x 10 ⁻⁹	2 x 10 ⁻¹¹
Central wavelength (nm)	300-1300	550	635	638	650	635	680
Spectral bandwidth	20%	20% (10%)	20% (10%)	Monochromatic	10%	10%	10%
Number of polarizations	2	1	1	2	1	1	1
Off-axis Throughput	high	medium	high	high	high	high	high
Sensitivity to low order aberrations	low	medium	low	medium	medium	low	n/a
Facility and Testbed		JPL HCIT-2 DST	JPL HCIT-2 DST	STScI HICAT	JPL HCIT-2	JPL HCIT-2 DST	Princeton Frick
Vacuum Operation		Y	Υ	N	Y	Y	N

Simulated Coronagraph Performances

Coronagraph Type	Aperture Type	Aperture [m]	λ _c [nm]	BW	IWA [λ/D]	OWA [λ/D]	Core Throughput	Average Contrast	Contrast @ 3λ/D, point star	Contrast @ 3λ/D, 1 mas star	ΔContrast @ 3λ/D due to 100 pm rms piston jitter
VVC	LUVOIR-B	8	575	10%	2.8	28	30%	5.E-10	3.E-10	1.E-09	6.E-09
APLC	LUVOIR-A	15	575	10%	3.8	12	15%	6.E-11	8.E-10	2.E-09	2.E-09
HLC	LUVOIR-A	15	575	10%	3.5	10	15%	3.E-11	1.E-10	2.E-10	3.E-09

- The table includes only coronagraphs recently analyzed by SCDA*
- The designs used deformable mirrors with 64 actuators across the diameter
- Manufacturability of the designs will be assessed (as part of the ExEP Coronagraph Technology Roadmap work)
- The table does not include all important aberrations. For example, all three coronagraphs are extremely sensitive to misalignment of the telescope's exit pupil with respect to the coronagraph's entrance pupil.
- The listed APLC and HLC are for LUVOIR-A. The LUVOIR-B aperture can enable substantially better performance (contrast/throughput/IWA). An HLC-LUVOIR-B design will be completed in FY23